國務院推動大規(guī)模設備更新的方案已經(jīng)在各地穩(wěn)步推行,其中提升教學科研水平的教育科研設備備受關注。
分析儀器智能化、自動化作為提高分析檢測能力的主要方向,也十分契合國家推行設備更新的“鼓勵先進、淘汰落后”的總體要求。馬爾文帕納科有多款設備均可以進行自動化升級,本文中我們將對溶液內(nèi)分子互作的金標準技術:等溫滴定量熱技術(ITC)的自動化升級進行介紹,您將看到ITC用戶的分析效率如何數(shù)倍的提升!
等溫滴定量熱儀(ITC)無需對樣品進行任何標記、無需芯片固定和修飾,也無需再生步驟,無分子量大小和樣品種類限制、是真正的無標記的溶液內(nèi)互作技術,被業(yè)內(nèi)認可為分子間相互作用分析的金標準技術。馬爾文帕納科在Microcal PEAQ-ITC的基礎上,新增了全自動化運行的功能,推出Microcal PEAQ-ITC Automated系列,實現(xiàn)自動化與智能化運作,集高靈敏度與全自動操作優(yōu)勢于一體。
PEAQ ITC (左),PEAQ-ITC Automated(右)
Microcal PEAQ-ITC Automated主要特點及優(yōu)勢:
全自動化,可全自動運行4塊96孔板
自動化操作,智能化分析,全面提升實驗可靠性
軟件簡化了工作流程,并提高數(shù)據(jù)分析的一致性
能在運行中追加新實驗,無需停止隊列
多次滴定,單次滴定器加載,提高效率
觸摸屏操作,最新的精簡布局
一次無人值守可完成384個樣品的分析
適合大批量樣品連續(xù)分析的客戶
PEAQ-ITC Automated每天可分析高達42個滴定(按24小時計算),相比手動版一般每天(按8小時計算)分析5個滴定,將分析效率提升7倍。全自動化實現(xiàn)加樣,清洗,樣品轉(zhuǎn)移,減少人員操作誤差,減少新手培訓和指導時間,提升數(shù)據(jù)質(zhì)量和儀器使用效率,把更多操作留給機器,將更多時間留給思考。
2024年,Microcal產(chǎn)品線中,Auto-ITC200系列、VP-ITC系列、VP-DSC系列、Cap-DSC系列將陸續(xù)停止服務,馬爾文帕納科的經(jīng)典產(chǎn)品Mastersizer 2000也已于2022年停止服務,為不影響您日常的研究、生產(chǎn)工作,我們建議您提前準備在替代產(chǎn)品上的方法轉(zhuǎn)移。同時為響應國家發(fā)改委推動大規(guī)模設備更新的政策,我們將提供設備更新?lián)Q代的技術支持和測樣服務,感興趣的用戶歡迎留下您的聯(lián)系方式,了解更多服務內(nèi)容。
?
PEAQ-ITC Automated 相關文獻(部分):
1.Zong, Y. et al.Development of Complementary Photo‐arginine/lysine to Promote Discovery of Arg/Lys hPTMs Interactomes. Advanced Science2307526 (2024) doi:10.1002/advs.202307526.
2.Weng, Z. et al.Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. Journal of Advanced Research57, 197–212 (2024).
3.Rivera, M. et al.A sensitive and scalable fluorescence anisotropy single stranded RNA targeting approach for monitoring riboswitch conformational states. Nucleic Acids Researchgkae118 (2024) doi:10.1093/nar/gkae118.
4.Ojha, M. et al.Structure of saguaro cactus virus 3′ translational enhancer mimics 5′ cap for eIF4E binding. Proc. Natl. Acad. Sci. U.S.A.121, e2313677121 (2024).
5.Choi, Y., Koh, J., Cha, S.-S. & Roe, J.-H. Activation of zinc uptake regulator by zinc binding to three regulatory sites. Nucleic Acids Researchgkae079 (2024) doi:10.1093/nar/gkae079.
6.Travis, C. R., Francis, D. Y., Williams, D. C. & Waters, M. L. Evaluation of acyllysine isostere interactions with the aromatic pocket of the AF9YEATSdomain. Protein Science32, e4533 (2023).
7.Qiu, C. et al.Intra-and inter-molecular regulation by intrinsically-disordered regions governs PUF protein RNA binding. Nat Commun14, 7323 (2023).
8.Liu, S. et al.Differentiating Inhibition Selectivity and Binding Affinity of Isocitrate Dehydrogenase 1 Variant Inhibitors. J. Med. Chem.66, 5279–5288 (2023).
9.Campagne, S. et al.Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor
RBM39. Nat Commun14, 5366 (2023).
10.Zeller, M. J. et al.SHAPE-enabled fragment-based ligand discovery for RNA. Proc. Natl. Acad. Sci. U.S.A.119, e2122660119 (2022).
11.Feng, T. et al.Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2. Nat Commun13, 5208 (2022).
12.Zhou, J., Horton, J. R., Blumenthal, R. M., Zhang, X. & Cheng, X. Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Nat Commun12, 3436 (2021).
13.Palte, R. L. et al.Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Commun Biol4, 927 (2021).
14.Liu, S. et al.Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1. Commun Biol4, 1243 (2021).
15.Chen, S., Zhang, W., Min, J. & Liu, K. Lesson from a Fab-enabled co-crystallization study of TDRD2 and PIWIL1. Methods175, 72–78 (2020).